RSS
In this site you will get a daily update health contents and article. 100% only for you !!!
ads

10/7 Wired: Science

Tuesday, October 6, 2009

Please add updates@feedmyinbox.com to your address book to make sure you receive these messages in the future.
Wired: Science - Understanding the latest research and theories. Feed My Inbox

Bird Cam Captures Albatross, Killer Whale Rendezvous
October 6, 2009 at 8:00 pm

black-browed-albatross1

Tiny cameras attached to the backs of four Antarctic albatrosses have revealed a clever feeding strategy: Instead of randomly scanning the open ocean for prey, some birds appear to fly alongside killer whales and scavenge for scraps left by the mammalian predators.

Albatrosses often have to fly hundreds of miles in just a few days in order to find their prey, and scientists have long wondered how the birds navigate over a largely featureless ocean. Previous studies suggested the birds might use a combination of scent and vision to guide them, but until now, no one had been able to directly record the behavior of the foraging seabirds.

To track the birds, scientists attached lipstick-sized digital cameras, equipped with depth and temperature sensors, to the backs of four albatrosses from Bird Island off the coast of South Georgia in the Antarctic Ocean. After three foraging trips, the bird-borne cameras had captured more than 28,725 images. Although many photos were too dark to be useful — and 6,600 were obscured by feathers fluttering in front of the camera lens — the remaining images yielded a startling result.

albatross-with-killer-whale“One surprising finding was that one of the study birds encountered a killer whale, Ornicus orca, during the course of the trip,” wrote the researchers in a paper published this week in the journal PLoS ONE. “This image showed that the killer whale broke the surface and that three other albatrosses were also apparently following the whale.”

Unfortunately, several subsequent images were blocked by feathers. But based on a rapid temperature drop recorded by the camera, it appears the albatross landed on the sea surface after spotting the killer whale, and likely spent the next 30 minutes diving for prey alongside the whale.

The researchers say it’s difficult to quantify how often black-browed albatrosses associate with killer whales in the open ocean, but they say their findings suggest that shared meals may be quite common.

“When killer whales feed on fish, fragments of prey are often left near the sea surface,” the scientists wrote. “These prey fragments could be an important food resource for albatrosses. Scavenging on such prey fragments may be more energetically advantageous than the pursuit and capture of live prey, as such activities can require frequent take-off, landing and prey handling, which may all be energetically costly.”

Similar behavior has been recorded in tropical birds, who scavenge alongside tuna, but this is the first time the behavior has been seen among albatrosses in the deep ocean.

In the video below, albatrosses fly around Bird Island, groom one another and care for their fuzzy gray chicks.

Image 1: Black-browed albatrosses fly over Bird Island, British Antarctic Survey. Image 2: Albatrosses interact with a killer whale on the open ocean. Photo taken with the bird-borne camera, National Institute of Polar Research, Japan.

Video: British Antarctic Survey.

See Also:

Follow us on Twitter @wiredscience, and on Facebook.




Anatomy of an Asteroid
October 6, 2009 at 5:15 pm

asteroidtracks

FAJARDO, Puerto Rico — Planetary scientists have reported a slew of new findings about the first asteroid ever spotted before pieces of it fell to Earth. The space rock contained a number of amino acids, had a flattened shape and appears to have been blasted off the surface of a larger body, researchers reported October 5 at the annual meeting of the American Astronomical Society's Division for Planetary Sciences.

sciencenewsThe asteroid, 2008 TC3, first came into the limelight in 2008 when researchers spotted the body just 19 hours before it broke apart in Earth's atmosphere and crashed into northern Sudan. Planetary scientists tracked the intact asteroid as it fell to the ground as meteorites (SN: 4/25/09, p. 13).

As observed through a telescope during the last two hours of its journey to Earth, the small asteroid appeared only as a flickering point of light. But by analyzing the variations in brightness of the rock as it tumbled through space, along with information culled from fragments on the ground, Peter Scheirich of the Czech Academy of Sciences in Ondrejov and his colleagues have now reconstructed what the asteroid would have looked like up close. The space rock resembled a flattened loaf of bread, Scheirich reported.

Further analysis of the shape of the asteroid, along with estimates of the asteroid's mass and the reflectivity of the recovered meteorites, could reveal whether the rock is solid through and through or porous, like a loosely held rubble pile, he adds.

The rock entered Earth's atmosphere "like the Apollo space capsule, flat face forward," says Peter Jenniskens of the SETI Institute in Mountain View, Calif., who led an effort to recover some 300 meteorites in Sudan in October 2008.

Structures in the meteorites — pores lined with fine-grained crystals of a mineral called olivine — suggest that the asteroid was blasted off the surface of a larger rock, reported Michael Zolensky of NASA's Johnson Space Center in Houston. That means it should be relatively easy to use the properties of these meteorites to understand the properties of thousands of observed asteroids in space, which only reveal clues about their surfaces through telescope images and spectra, he says.

Other studies, also reported October 5, reveal that the meteorites contain amino acids, the building blocks of proteins, that must have come from 2008 TC3, reported Michael Callahan of NASA's Goddard Space Flight Center in Greenbelt, Md.

The meteorites belong to a rare type called ureilites, which contain microscopic diamonds. "To my knowledge this is the first report of amino acids in any ureilite-type meteorite," said Daniel Glavin of NASA-Goddard, who collaborated with Callahan and other colleagues on the analysis.

The researchers identified 18 amino acids, including alpha-aminoisobutyric acid and isovaline. Because they are uncommon on Earth, Glavin said, "it is highly likely that these two amino acids were formed in space."

"The discovery of amino acids in [2008 TC3] provides additional support for the idea that organic matter delivered by asteroids could have seeded the early Earth with the raw ingredients for life," he noted. At the same time, the presence of the amino acids is puzzling, Glavin added.

Evidence suggests that 2008 TC3 was heated to temperatures as high as 1,300˚ Celsius billions of years ago, yet amino acids are destroyed at temperatures above 500–600˚C, Glavin said. Other researchers, including Richard Zare, Amy Morrow and Hassan Sabbah of Stanford University in Palo Alto, Calif., reported that they had found common components of soot known as polycyclic aromatic hydrocarbons in the meteorites. This soot is interspersed with amino acids, Zare said.

"The big mystery now is how did these complex organic compounds survive such high temperatures?" notes Glavin.

One possibility is that the amino acids or their precursors were incorporated into the asteroid's parent rock during its formation and survived the heating and melting that would have occurred when the parent rock was blasted into pieces.  Another possibility, he notes, is that amino acids formed inside 2008 TC3 itself much later on, after it cooled to temperatures below 500–600˚C.

To help settle these and other questions, Jenniskens plans to return to Sudan  this December to pick up more specimens.

Image: The contrail left by the asteroid's passage through the atmosphere. / Muawia Shaddad.

See Also:




Right Stuff, Wrong Sex: NASA's Lost Female Astronauts
October 6, 2009 at 1:09 pm

tilttable

Imagine if the first person on the moon had proclaimed, “That’s one small step for woman, one giant leap for mankind.”

It could have happened. In the late 1950s, the United States government contemplated training women as astronauts, and newly released medical test results show that they were just as cool and tough as the men who went to the moon.

“They were all extraordinary women and outstanding pilots and great candidates for what was proposed,” said Donald Kilgore, a doctor who evaluated both male and female space flight candidates at the Lovelace Clinic, a mid-century center of aeromedical research. “They came out better than the men in many categories.”

The clinic’s founder, Randy Lovelace, developed the health assessments used to select the Mercury 7 team, and thought that women might make competent astronauts. It was a radical idea for the era. Women’s liberation had just begun to stir, and only a quarter of U.S. women had jobs.

But Lovelace was practical: Women are lighter than men, requiring less fuel to transport them into space. They’re also less prone to heart attacks, and Lovelace considered them better-suited for the claustrophobic isolation of space.

In 1959, Lovelace collaborator Donald Flickinger, an Air Force general and NASA advisor, founded the Women In Space Earliest program in order to test women for their qualifications as astronauts. But the Air Force canned it before testing even started, prompting Lovelace to start the Woman in Space Program.

cobbNineteen women enrolled in WISP, undergoing the same grueling tests administered to the male Mercury astronauts. Thirteen of them — later dubbed the Mercury 13 — passed “with no medical reservations,” a higher graduation rate than the first male class. The top four women scored as highly as any of the men.

“They were all motivated to a degree you could not measure. They knew they were ideal candidates, but NASA regulations kept them out of the game,” said Kilgore.

The results of the women’s tests are described for the first time in an article published in the September Advances in Physiology Education, and show just how capable they. One set of results, from the sensory deprivation tests, are especially striking.

“Based on previous experiments in several hundred subjects, it was thought that 6 hours was the absolute limit of tolerance for this experience before the onset of hallucinations,” write Kilgore and his co-authors. “[Jerrie] Cobb, however, spent 9 hours and 40 minutes during the experiment, which was terminated by the staff. Subsequently, two other women (Rhea Hurrle and Wally Funk) were also tested, with each spending over 10 hours in the sensory isolation tank before termination by the staff.”

During the test, the women were immersed in a lightless tank of cold water. By contrast, John Glenn’s memoir recounts being tested in a dimly-lit room, where he was provided with a pen and paper. Glenn’s test lasted just three hours.

The would-be Mercury 13 astronauts would ultimately be held to a different standard than their male counterparts. Some NASA officials speculated that female performance could be impaired by menstruation. Others wanted pilots who had already flown experimental military aircraft — something only men could have done, since women were barred from the Air Force.

In August 1961, WISP was cancelled. It was not until 1995, when Eileen Collins piloted the STS-63 shuttle around the MIR space station, that the Mercury 13 met again. Collins was the first woman to become a space pilot, but not the first woman who deserved to.

“They knew it was a long shot, but they were willing to take it,” said Kilgore. “They were very special people.”

See Also:

Citation: “A forgotten moment in physiology: the Lovelace Woman in Space Program (1960–1962).” By Kathy L. Ryan, Jack A. Loeppky and Donald E. Kilgore, Jr. Advances in Physiology Education, Vol. 33 No. 3, September 2009.

Image: Jerrie Cobb on a tilt table and beside a Mercury capsule, from Advances in Physiology Education.

Brandon Keim’s Twitter stream and reportorial outtakes; Wired Science on Twitter. Brandon is currently working on a book about ecosystem and planetary tipping points.




The Making of a Mind-Blowing Space Photo
October 6, 2009 at 8:43 am

md_2009-09-19_orionmosaicns

One late night in 2007, Rogelio Bernal Andreo and his wife were driving down Highway 1 along California’s Lost Coast, when his wife opened the moon roof. What spread out above them looked nothing like the mauve sky near their Sunnyvale home.

“It was like the Milky Way was in front of us,” said Andreo, a former early eBay employee, who runs a Spanish-language Internet company. “It looked like it was gonna fall on us.”

He pulled out his digital SLR camera and spent two hours trying to capture the vast galaxy. When he got home, he downloaded the photos, and caught the astrophotography bug.

“I started to look at on the internet and see all these pictures, really gorgeous pictures,” Andreo said. “I said, ‘How do people do this?’”

Two years of intensive study, rigorous practice, and perhaps $10,000 of equipment later, he knows. And he let Wired.com in on his process. Step-by-step, we’ll break down how he went from the black-and-white star scene below to the mind-blowing space photo above.

Thanks to cheaper high-quality digital cameras and editing equipment, creating beautiful images of galaxies, nebulae, and star clusters is now within the reach of anyone with a few thousand dollars to spend.

So, we live in a golden age for space photos, but looking at the technicolor images of what appears to the naked eye to be a fairly bland sky, we find ourselves asking: does it really look like that?

As we find in this behind-the-scenes look at the making of a mind-blowing space photo, the answer is yes — but just not to your eyes, which are pretty poor sensors, compared with purpose-built astrophotographic equipment.

But that doesn’t mean the photos aren’t “real.” Most astrophotographers have an ethic: They won’t add color or lasso just a part of an image for editing. They can only bring things out of the data, not add them. The photos are often processed in Photoshop, but what they do is the opposite of falsifying the visual reord through. Astrophotographers are using digital editing tools to find the truth in the noisy data that are the heavens.

“The stuff up there is really dim,” Andreo said. “The good thing is that the camera records all that and the trick is to bring it out.”

belt-1s

The first step in getting a good space photo is picking a spot without light pollution from cities. In northern California, Andreo prefers Lake San Antonio, Henry Coe State Park, and Fremont Peak, depending on how far he wants to drive.

His equipment list is long. He packs a Takahashi telescope, Takahashi mount, tripod, SBIG STL11000M camera, adapters, cables, deep-cycle marine batteries, an Asus eee laptop, food, and coffee of course.

This photo is how the process begins. It’s the first of 11 black-and-white exposures that he’ll make. The field of view is just the left third — the area around the bright blue stars of Orion’s belt — of the completed panorama at the top of the page.

“This is just one shot, a fifteen-minute exposure,” Andreo said. “That’s how it comes out of the camera. The original size of the picture is like 20 megabytes.”

Of course, he shoots in RAW format with no compression to maximize the amount of data the images retain.

belt-2s

Now, the processing begins. Andreo takes his eleven exposures and “stacks” them in Photoshop, one on top of the other. Then, he averages their data to screen out the noise. Each exposure has a set of random noise in some subset of pixels. By combining them, the good pixels outweigh the bad pixels and you end up with a less noisy image.

“The stuff that’s really up there is going to stay, but the noise — because it was random — is going to disappear,” he said.

At this stage, he also does background calibration, which tends to brighten the image and make it a little “creamier.”

belt-3s

Here, Andreo has started to “push the histogram,” as astrophotographers say.

“You push up or down the low levels of the image and the high levels of the image and more data starts to show up,” he said. “It’s the first thing that most people are going to do. Once you stack your images, then adjust your histogram a little to see how much stuff is really there.”

Here, more stars are obviously apparent and the creaminess has gone away with the processing for greater contrast. Next comes the color.

belt-4s

After he shoots an area of the sky with the monochrome, high-resolution filter, he switches to separate red, green, and blue filters. He goes through the same process for each color component as he did for the black-and-white image. He takes multiple exposures, combines them, and does background calibration.

“It’s just red green and blue combined and slightly stretched to bring out all the detail,” Andreo said. “You start to see more of pretty picture, basically.”

belt-5s

Here, Andreo has draped the color data onto the more detailed luminance image.

“I take the RGB that you saw from the previous image, and I put it on top of the luminance,” Andreo said, “but I don’t want the details, I just want the color information.”

Once that’s complete, he pushes the histograms some more or perhaps adjusts the levels in the image to bring out the details. Some of the artistry comes out in this stage.

“Because there is a lot of creativity, with the same set of raw data, two different people are going to come up with different things,” he said.

belt-6s

The last step was simply to rotate it vertically because he just “liked it more this way.” After all, the number of targets for amateur astrophotographers is fairly limited. Framing is a key component of standing out.

“I’m hoping that my final picture will escape mediocrity,” he said. “It may not be the best you’ve ever seen, but at least it’s not just one more.”

Later, that rotation turned out fortuitously when a friend saw the image and suggested he combine it with photos he’d taken of an adjacent region of the sky.

Working with a program called Register that helps photographers join their photos by identifying the common stars in different images, he stitched the images together. It required rotating and cropping his original Orion belt, but when the mosaic was finished, it was absolutely breathtaking. Last month, it was selected by NASA as the agency’s Astronomy Picture of the Day for September 18th.

The image certainly traveled a long way from its initial incarnation to the finished product, but is the first image any more real than the last? Does adding dozens of exposures together and “pushing the histogram” add or subtract from the reality of the image?

After stepping through the transformation, we’re not convinced either way, but we’re sure glad that someone takes pictures of space that look like pieces of the heavens.

Images: Rogelio Bernal Andreo.

See Also:

WiSci 2.0: Alexis Madrigal’s Twitter, Google Reader feed, and green tech history research site; Wired Science on Twitter and Facebook.



 

This email was sent to carrizolaziale@gmail.comCreate Your Account
Don't want to receive this feed any longer? Unsubscribe here.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment